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Multicompartment Kinetic Models for Lead

I. Bone Diffusion Models for Long-Term Retention
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The long-term retention of lead in bone poses a number of difficulties for the usual
multicompanmeni models. The use of diffusion models based on exchange of lead between
Mood In canaliculi and the crystalline bone of the osteon allows a linear companmental
approximation suitable for statistical estimation of kinetic parameters in peripheral com-
partments. The model is applied to lead Mention by beagle dogs, e ins *,c*ttmt rmi. inc.

1. INTRODUCTION
Lead is a pervasive environmental hazard in industrialized societies. It is usu-

ally encountered as airborne lead from additives to gasoline, in lead paint, in food
contamination from soldered containers, and in contamination of drinking water
from industrial discharges'. A host of personal patterns of exposure are known,
including occupational exposures, cigarettes, consumption of illicitly distilled
spirits, and lead pica. The patterns of exposure have been detailed in many re-
ports, including those of the National Academy of Science-National Research
Council (NAS-NRC. 1972: 1980). A key issue in the regulation of environmental
lead is the establishment of dose-response relationships between time-varying
patterns of exposure to lead and biological precursors of adverse health effects.
The purpose of this note is to extend some previous analyses to more complex
models for the kinetics of lead.

Most of the adult body burden of lead is stored in the bone tissues. While the
quantity of lead stored in the teeth is only a small fraction of the total lead burden.;
tooth lead constitutes a uniquely accessible indicator of cumulative lead exposure
(Steenhout. 1982). Not all of the hard tissues of the body are permanent sinks
for lead, however. While bones retain a large fraction of their lead burden for
many yean, another significant fraction of their temporary lead burden may be
returned to the Mood over an interval comparable to the residence time of lead
in other tissues, up to 100 or 200 days. Linear companmental models for lead
retention and distribution in man have been developed by several authors (Ra-
binowiu tt «L. 1976; Bernard. 1977; Batschelet. 1979). A compartment is as-
sumed to bee*homogeneous and well-mixed physiological pool that supports no
concencrttMft gradients internally so that ion transport appears to be nearly in-
staneous wMMo the compartment. Blood and soft-tissue compartments appear
"fluidlike" OB time scales of a month or two. But lead retention in bone is another
matter. Ions that have entered the bone matrix tend to travel through that matrix
by a process of diffusion, and diffusion of ions through a crystalline matrix can
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be slow. In rather general terms this appears to explain the very long retention
times for lead in the body, since lead has been observed to behave similarly to
the alkaline eanh metals such as calcium, strontium, barium, and radium that are
known as "bone seekers." It would be more precise to say that these metals are
bone volume seekers, in contrast to the bone surface seekers such as plutonium
and other actinide elements.

There have been few efforts to incorporate bone volume seeking metals into
compartmental models in which a number of peripheral soft-tissue compartments
are also present. Marcus (1977. 1979) has presented a mathematical formalism
using semi-Markov processes. This methodology may be useful for modelling and
simulation, but poses formidable difficulties in statistical estimation of the un-
known kinetic rate parameters. It is precisely these rate parameters which are
needed in order to estimate the potential effects of various time-varying exposure
patterns on critical peripheral target organs (e.g.. brain, marrow) in which high
concentrations of lead may accumulate and interfere with normal physiological
processes-of the-central nervous system and hematopoeietic system. We have
therefore developed a physiologically plausible model for bone diffusion that is
more useful for estimation of kinetic parameters.

2. A MODEL FOR DIFFUSION IN BONE
Many of the basic ideas here have been described by Marshall and Onckelinx

(1968). Bone surface includes the periosteum exposed to extracellular fluids, the
endosteal surface at the bone marrow, the surfaces of the trabeculae. and (if
present) the Haversian and Volkmann canals. The bone volume includes the
osteocytes. their lacunae, canaliculi. bone crystal, and the organic matrix. From
(Vaughan. 1970):

The blood-vessels that nourish the bone run in the canals of the Hav-
ersian systems. ... At a little distance from each canal is what is called
a cement line across, which the canaliculi do not communicate. The area
of bone around each Haversian system bounded by "a cement line is
known as an osteon.

The radius of an osteon in cortical bone is on the order of 100 \an or less, but
there is a great deal of variation in the size of the Haversian canals and osteons.
In the diffusion model considered by Marshall and Onckelinx (1968), it is claimed
that the ions must ultimately reach the bone volume by passing from the blood
vessel in the Haveniaa canal through tiny canals (canaliculi), and that the passage
from a oaoaicuhu into the surrounding canaiicular territory can be described by
a cytiadrical diffusion equation. A typical canaiiculus in mouse bone has a radius
about &075 ua, and the "limit of canaiicular territory" has a radius of about
0.85 iiaio their model.

Bone surface seekers are affected primarily by two processes: resorption (de-
struction or removal of bone to plasma) and apposition (bone surface formation
due to deposition of new bone) which is very important for children. Deposition
occurs relatively slowly in cortical bone in adults, but more rapidly in trabecular
bone. The analogous processes in bone volume are diminution and augmentation
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(both of which are modeled here by exchange with blood and extracellular fluid).
(This description follows Marshall (1969).)

Compartmental models for alkaline earth metals, especially calcium, have been
developed. Marshall (1969. p. 61) exhibits 10 such models: see Jung et al. (1978)
and Heaney (1976) for critical reviews and references. None of these models
directly incorporate bone volume diffusion. Groer and Marshall (1973) did con-
sider diffusion as an alternative model for calcium exchange with serum at the
bone surface, and found that the short-term kinetics of calcium exchange at
resting bone surfaces could be far better described by a simple one-compartment
model than by a model of calcium diffusion directly into the bone at the surface.
However, in order to test this hypothesis they assumed the form of the serum
concentration X(l.i) was a power function

X(l.t) = 27.11 (I0)o:5(/ + 10ro:i(3000)l3(t + 3000)' <} (for dogs)
X(l,t) - 20.83 (100)'2(r + lOO)'12(for rabbits)

where t is in minutes and A" is suffice activity of the tracer isotope. The duration
of the expenments was about 400 hr (dogs) and 48 hr (rabbits). The use of power
functions for X(l.t) was not explained, and indeed cannot be explained on the
basis of a linear compartment model. The diffusion model for bone volume
seekers is a useful alternate explanation.

The numerical >alues of the physical constants strongly suggest that we con-
sider the primary mechanism of transfer of metals to bone volume to be the
exchange between blood in canalicuii and bone crystals in the canaJicular territory
(see Fig. 1). The radius of the canaJiculi is taken as about a « 0.075 \an, which
is the inner radius of the canaJicular territory volume in an assumed cylindrical
cross section, and the outer radius of the canaJicular territory is about b - 0.85
urn. If ions were deposited onJy near r » a, most ions would return rapidly to
the blood. But some ions would enter the interior of the canaJicular territory and
then exit only after an extended random walk through the crystalline matrix of
the canalicuJar territory.-either through some other canaliculus or through the
Haversian canal. The other canaJiculi are distributed more or less randomly in
the matrix. In a dense network of canaJiculi, the canaJicular territory is in the
shape of a polygonal prism surrounding each canaliculus. We believe that a useful
first step can be made by approximating these polygonal prisms by circular cyl-
inders of radius b, with the understanding that b is itself somewhat variable. The
inaccuracy introduced by this approximation is not large compared to other un-
certainties.

The diffusion constant D (area per unit time) provides crucial information on
the time scale of the process. Groer and Marshal (1973) suggest that D * 10""
cmVsec (as order of magnitude approximation); thus the typical time constant for
random walk must be on the order of 6*/D - 7.225 x 10' sec - 2.29 years. The
time scale for the canaliculus itself is only a2/D - 6.5 days.

This is the heart of the difficulty in assuming that bone is a single homogeneous
well-mixed compartment. The spatial location of the metal ion in bone is impor-
tant, and an ion located inside the canaiicular territory may take many years to
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FIG. I . Schematic model for lead kinetics in which bone is represented as an extended cylindrical
• 'canaiicular territory. ' '

escape through some canaliculus or through the Haversian canal. Escape is pos-
sible, however, so that lead sequestered in bone at any age (especially in child-
hood) becomes a significant endogenous lead supply and contributor to blood
lead later in life.

In order to develop a mathematical model for lead ions in the body, it is nec-
essary to specify the ion transport processes involved in all compartments. These
are assumed to be:

(a) cylindrical diffusion of ions in the bone volume;
(b) ion escape at the boundaries of canalicular territory,
(c) ion exchange with blood at the canaliculus. and
(d) transport between blood, soft tissues, and boundaries of the canaiicular

territory in bone.
Cylindrical diffusion processes are described in several books, but Carslaw and

Jaeger (1959) is a comprehensive reference. Let t denote time and r the distance
from the center of the canaliculus, as in Fig. 1.

Let Q(r.t) be the concentration of metal ions at radius r at time t. The basic
diffusion equation is

9Q(r,tVdt - D (I1<!//•) 9Q(r,tVdr).
We first specify the outer boundary conditions for loss of ions from the canalicul-
territory. The radius b serves only to scale the diffusion process, since a com-
pletely homogeneous diffusion into a completely homogeneous medium with reg-
ularly spaced canaiiculi (e.g., on a square or triangular lattice) would have zero
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concentration gradient along the surface of the polygonal prism marking the
boundary between adjacent canaliculi. Because the loss of ions is not homoge-
neous, we will assume there is a first-order concentration gradient at radius b.

-cQlb (2)

where c is a dimensionless gradient flow parameter that can be adjusted to fit the
data.

For ion loss on time scales of a few weeks to many years, we may assume that
most ions returning to the blood from the bone matrix do so through the same
canaliculus by which they were initially deposited, but some ions may return to
the blood by diffusion through the bone matrix to some other canaliculus or
through the Haversian canal. The canaliculus is assumed to be a hollow cylinder
of radius a. There is a little loss of accuracy in modeling the kinetics of long-term
diffusion by assuming a relatively thin canaJiculus with a » 0, since the diffusion
transit time across the canaJiculus is so short (about 1 week).

It is also convenient to assume simple first-order kinetics for the exchange of
lead between blood (or the diffusible plasma component in blood) and the other
soft tissues, as well as the blood-bone exchange at the canaJiculus. Linear kinetic
models are defined by the constant rate of fractional transfer of lead from com-
partment j to compartment /'. here denoted k(ij). This assumption has been
explored in detail in (Marcus. I985a) using the data in (Rabinowitz et al., 1976).
We found that the first-order linear kinetic model with constant k(ij) cannot be
rejected at blood lead concentrations less than 30 n-g/dl. We also found (Marcus,
I985b) that lead in human blood appears to follow nonlinear kinetics at much
higher blood lead levels, say in excess of 60-80 u>g/dl; the analyses were based
on data in OeSilva (1981). In this note we will assume linear blood and tissue
kinetics, implicitly assuming lead exposure is not excessive.

An explicit mathematical development for bone diffusion is given in (Marcus,
1983). The basic ideas can be expressed by equations for the rate of change of
bone lead concentration at the canaJiculus. Q(0,t), and among the soft tissue and
blood compartments. Let X(i,t) be the quantity of lead in some nojibone com-
partment / at time t. where i * I . . . . . A. Bone is i • n. Then

d0(0,/)/d/ = (rate of absorption of lead from blood at the canaliculus)
+ (rate of diffusion of lead into canaliculus from bone volume)
- (rate of resorption of Jead from bone to blood) (3)
- (rate of diffusion of lead into bone volume from canaliculus)

dX(i,t)/dr * (rate of lead absorption into compartment / from other tissue)
+ (rate of absorption directly into / from canaJiculus)
- (rate of flow from compartment / to other soft tissues) (4)
- (rate of loss of lead to bone directly from compartment /).

The mathematical expressions for Q(Q.t) and X(i.t) are complicated, using an
infinite sum of exponential functions of time. In practice these equations can be
well approximated by a comparunental model with a finite number of pools, i.e..
a finite number of exponential compartments. The key to doing this involves
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analytical approximation of the solutions 9(/t) or eigenvalues of the diffusion
equation (I) with boundary condition (2), and a - 0.

The assumed conditions for lead ion loss at the boundary of the canalicular
territory determine the mathematical form of the eigenvalues d(A). With the
preceding assumptions, the eigenvalues 6(/>) are the infinitely many solutions to
the positive solutions to the equation.

8(/i)7, (9(/»)) -c70(8(/»)) - 0 (5)

where c is the dimensionless parameter in (2), and /„ (x) is a Bessel function of
order n. Convenient approximations for 0(/>) have been developed by Professor
James A. Cochran of Washington State University and are described elsewhere
(Marcus. 1983). The following even simpler approximations will be used here:

D a(j)-lbl (6)
where

fl(l) = 2 (2c)°3/(4 T c)03 a(J) - (j - 3/4) IT for> « 2. 3. (7)

For c < 1, the approximation is accurate to with 2%. There are thus some
regression coefficients Ad',/) that depend on the linear kinetic model for soft
tissue, on the component approximation, and on the initial conditions such that
we can approximate the long-term retention by

X(U) - A(U) exp(-e(l)r) + A(i.2) exp<-e<2)/)
) exp(- 0(1)0 + AOi.2) exp(-8(2)/)

. . (8)
. . . (9)

A technique for fitting the coefficients A(/J) and estimating the parameters
k(ij), D/b2, and c is described below.

3. FITTING THE DIFFUSION MODEL TO DATA
In order to use conventional computer programs such as SAAM 27 (Herman

and Weiss, 1978) to fit a,compartmental model to data, it is necessary to estimate
the nonbone fractional transfer rates k(ij) for ij ; » 1, . . - , n - 1. the rate
coefficient D/b2 for bone diffusion, and the dimensionless coefficient c that mea-
sures the gradient for ion loss at the canalicular boundary. The following approx-
imation allows these computer programs to estimate fractional transfer coeffi-
cients ttn.O from tissue into bone and k(i,n) for loss from bone to tissue.

Assume that bone exchanges only with a blood or blood serum pool in which
i • 1 denotes the blood compartment. If there were no diffusion, then tt/t.n) -
-k(l.n). However, each value of h determines an eigensystem of size n with
transfer coefficients Ad* j) except for k(n.n) » -*{l,/i) - D S^AV^2. This suggests
absorption be partitioned among the various components h • I, 2, 3. ... cor-
responding to the eigenvalues (K/0 of the diffusion equation, which can be done
in three steps: (a) Omit compartment n and replace it by "bone components" n
+ h. h - 1, 2, . . . m. (b) Replace the parameter k(n.l) for bone absorption of
tracer from blood. Let k(n + A.I) be the absorption into bone component /•
where the total rate k(n.\) - k(n + I . I ) + k(n + 2.1) + ... is kept the same.
(c) Replace the normal loss rate k(\,n) by k(l,n) + D (K/i)W in bone component
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i « n + h. This represents combined loss of tracer from bone due to normal
processes such as bone resorption. as well as the return of tracer to blood by
slow diffusion to the canalicular boundary at b. The number of components m
can be increased until the model fits the data.

The approximation thus consists in replacing the bone diffusion model with n
compartments by a conventional compartment model in which there are m pe-
ripheral mammillary pools, each representing an eigenvalue component h. This
is shown symbolically in Fig. 2.

4. LEAD KINETICS IN BEAGLE DOGS
There is relatively little experimental data that can be used to simultaneously

estimate all of the parameters in this model, since observations are required both
for short-term kinetic parameters affecting blood and tissues, and for long-term
retention. Short-term experiments usually involve serial sacrifice of the experi-
mental animals and determination of tissue concentrations by autopsy. Long-term
studies often involve radioisotope tracers with determination only of whole-body
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retention, blood concentration, and possibly excretion. One study which allows
estimation of both short-term and long-term kinetics was developed at the Uni-
versity of Utah (Lloyd et at.. 1970: 1975; 1982). Beagle dogs were injected with
:i°Pb and observed for several years. Three dogs in the study, all from the
same litter, were injected intravenously with earner-free :'°Pb. The dog labeled
T2L5 was sacrificed at 28 days after injection, whereas TILS survived for 1497
days (4 years) and T3L5 for 1100 days (3 years). Whole-body and blood lead were
reported separately for each, cumulative fecal and urinary excretion as an average
for the three dogs, and liver, kidney, skeleton, and other tissue concentrations
for T2LS at 28 days. Because the dogs were littermates. it was assumed that the
average fecal and urinary excretion data and the T2L5 tissue data were repre-
sentative of the group. However, there were sufficient differences in blood lead
and whole-body retention that the kinetic models were fitted to data on each
individual dog in order to estimate between individual differences within a single
litter.

We note that only direct measurement of skeletal lead was in dog T2LS at 28
days. Since- the skeleton already held 63% of the remaining burden at that time,
it was reasonable to assume that most of the remaining burden was in bone
thereafter.

Two models were fitted to data from dogs TILS and T3L5. The first was a
conventional companmental model that was also fitted to T2L5. as shown in
Table 1. The second model was the bone diffusion approximation, as shown in
Table 2. The parameters were estimated with the SAAM 27 program (Berm&n and
Weiss. 1978). Several passes through the data were required to obtain a good fit.
both in terms of model structure and estimation of parameters. It was possible
to estimate parameters for compartments that could not be directly observed,
including "other (soft) tissues." and two additional (presumably bone) compart-
ments with long retention times of about 60 and 3000 days (see Fig. 3). The initial
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TABLE I
KINETIC PARAMETEU FOK COMPAHTMENTAL MODEL IN BEAGLE Does

From/To

Blood/liver
Blood/kidney
Blood/other uisues
Blood/feces
Blood/ unne
Blood/boot ? (deep)
Blood/boM 7 (shallow)
LjvtfiWood
LJvttffiMM
Kidney/Mood
Otter titHMMood
Boat (dttpXMood
BOM? (shallowVWood

Noit. Values pretexted

Dof TIL5

0.830
0.260
0.161
0.0631
0.0482
0.0372
0.0644
0.341
0.0473
1.716
0.217

(0.184)
(0.183)
(0.086)
(0.0085)
(0.0021)
(0.0021)
(0.0037)
(0.071)
(0.0030)
(1.090)
(0.096)

Do§T2U

0.694
0.336
0.031
0.0609
0.0397
0.0339
0.0636
0.354
0.0379
2.601
0.077

0.000302 (0.000039) 0.000301
0.0139 (0.0020)

arc estimated kincuc
art standard errors. Oua are from Uoyd ti at.

0.0160

parameters in
(1970. 1975).

(0.107)
(0.171)
(0.043)
(0.0062)
(0.0016)
(0.0203)
(0.0249)
(0.058)
(0.0061)
(1.292)
(0.095)
(0.000329)
(0.0138)

units of days'

Oof

0.497
0.332
0.098
0.0596
0.0391
0.0337
0.0586
0.252
0.0418
2.647
0.188
0.000476
0.0135

'; values in

T3L5

(0.129)
(0.183)
(0.067)
(0.0063)
(0.0016)
(0.0026)
(0.0044)
(0.061) 1
(0.0050) 1
(t.465) ll
(0.095) -~m
(O.OOOOBOi j*l
(0.0018) ^J

parcmneses 'SB
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TABLE 2
KINETIC PARAMETERS FOR COMPARTMENTS MODEL WITH BONE DIFFUSION IN BEAGLE Docs

From/To

Blood/liver
Blood'kidney
Blood-other (issues
Blood feces
Blood/unne
Blood. bone (j - I)
Blood bone <j » 2)
Blood bone 17 - 5)
Blood bone (j « 4.5)
Liver/blood
Liver/feces
Kidney/blood
Other (issues/blood

D/b: ( diffusion scaJe)
e- (gradient coefficient)

Dot TIL?

0.870 iQ.077)
O.J27 (OOJOl
0.171 (0.03:)
00647 (000761
0.0491 (0.0017)
O.OJ77 (0.0057)
0.
0.066: (00099)
0.
0.354 (0.036)
0.0473 10.0049)
2.025 (0.233)
0.244 (0.039)

0.000321 (0.000050)
0.332 (0.083)

Do«T3L3

0.750 (0.075)
0.266 (0042)
0.145 (0.032)
0.0635 (00070)
0.0424 (00015)
0.0350 (00052)
0.
0.0665 (001001
0.
0.387 (0.042)
0.0410 (0.0052)
1.980 (0.2J7)
0.245 (0.045)

0.000290 (0.000047)
0.967 (0.151)

Noit. Values presented are estimated kinetic parameters in units of days'1; values m parentheses
are standard errors. Data are from Lloyd ti al. (1975).

estimated standard, error of the initial parameter estimate was always set to 100%
of the initial parameter value. The standard errors of the final estimates were
almost always less than 50%. except for dog T2L5 for which there were only 28
days of data.

The bone diffusion model provided a good fit to the data as did the usual
compartmentai model (Figs. 4-7). For TIL5 the error sum of squares for the

FIG. 3. Schematic model for lead kinetics ia which bone is represented as a companmcntal structure
with two bone pools.
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700 400 COO 100 1000 1700 1«00
TIMf

FIG. 4. Observed and predicted fraction of lead dose in blood for beagle dog TIL5.

diffusion model and the ordinary model (in %2) were 5.84 and 5.96. respectively,
and for T3L5 were 3.69 and 3.93. respectively. While the bone diffusion model
was not strikingly superior overall, it was certainly no worse than a good com-
partmental model—even with the constraints in time scales for diffusion imposed
by the cylindrical diffusion model. The diffusion model did have more adjustable
parameters, however.
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FIG. J. Observed and predicted fraction of lead dose in blood for beagle dog T3L5. Fis.7.
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FIG. 6. Observed and predicted fraction of lead retention in body for beafle dot TIL5.

5XWHOLE-BODY LEAD RETENTION
There are substantial experimental difficulties in obtaining time series data on

lead concentrations in peripheral tissues other than blood for a single subject or
experimental animal. Tissue concentration data at time of autopsy may provide
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Fie. 7. Observed and predicted fraction of had mention in body for beacic dof T3U.
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very complete information about organ burdens at some point in time, but very
little information about kinetic parameters that are needed to model the changes
in organ burden due to exposure to time-varying environments. The use of a
sample of animals sacrificed at different times provides a cross-section of organ
burdens across some population, but this may not tell us about any given indi-
vidual since the variation in internal kinetic parameters may be very large even
among animals of the same strain. In order to estimate the population variability
in these kinetic parameters and thus to identify the fraction of the population that
may be most highly at risk to a given lead exposure, it may be necessary to use
only the most readily accessible kinds of measurements — blood measurements
in humans, and blood and whole-body retention in laboratory animals, here de-
noted /?(/).

In choosing a method for fitting available whole-body retention data we must
specify the purpose for which the retention function is needed. If the only purpose
is to provide as concise a summary of the data as is possible, then one might
consider -a 'generalization of the model proposed in Marshall tt al. (1972) which
is a combination of exponential and power functions of time r.

(A, exp(-v,f) A,exp(-vy) (10)
in our notation: we shall call this the ICRP model. There is little doubt that this
is the most parsimonious of the models that can be fitted to long-term retention
data for lead (Hursh. 1973) and many other metals (Wise. 1974; Matsubara et al..
1981). By use of a formal statistical decision criterion: the Akaike Information
Criterion. Matsubara et al. (1981) found most of the exponential terms unneces-
sary for curve-fitting purposes.

Unfortunately, curve fitting is not the primary goal of the toxicokinetic data
analysis. The purpose is. rather, to see what bounds can be put on the internal
kinetic parameters that determine the distribution of lead to blood and other
organs. It is thus necessary to work with a family of curves that can be sensibly
interpreted in terms of infernal mechanisms. In this regard there are few practical
alternatives to the use of the familiar linear companmental model (Jacquez. 1972).
In a companmental model with n pools or compartments, each companmental
retention function (and thus the whole-body retention function £(/)) will be the
sum of. at most, n exponential functions; i.e.,

R(t) A2exp(-v2/) - A. exp( - (ID
The longest tunescales will differ only slightly from the residence times of lead
ions in the most long-lived compartments (e.g., conical bone) and so /?(/) will
provide at least some tentative information on internal kinetic parameters. It is
known that determination of the parameters of the plasma clearance curve pro-
vides useful limits or bounds on some combinations of the kinetic rate parameters
(Chau. 1977). A similar analysis may be applied to A(r), but in models with a
large number n of companments these bounds may not be useful. However, it
combination of blood lead observations with /?(/) and with certain noninvasiv-
measurements such as hair loss, and fecal and urinary elimination of lead, may
allow valid inferences about internal kinetics. We thus adopt the usual compan-
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mental model leading to /?(/) as a mixture of exponential functions in Eq. ( I I )
because the results can. in principle, assist in estimating internal distribution of
lead.

A second reason for assuming R(t) is an exponential mixture is that the slow
rate at which lead is lost from bone is probably due to diffusion of lead ions
through the bone matrix (Marshall and Onckelinx. 1968: Marshall. 1969: Wise.
1974). A cylindrical diffusion process introduces an infinite spectrum of eigen-
values (time scales), but only a few of these have large coefficients X, so that
even the power function diffusion model can be well approximated by a mixture
of exponential functions with a small number n of components. Thus, there are
both practical and theoretical reasons for restricting consideration to compart -
mental models like Eq. (11).

In order to study the distribution of population parameters for lead retention
over long periods of time, it is necessary to have data on individual animals.
Much of the data reported in the literature are based on averages from several
animals. The requirements of long series of individual data points and a large
sample led us to use published data on beagle dogs for these analyses. In addition
to the detailed analyses for beagle dogs TIL5 and T3L5 reported previously,
retention data were given for seven other beagle dogs for 3 to 9 years (Lloyd ti
al.. 1970; 1975; 1982). These dogs were from only three litters, however. Hursh
(1973 and 1978) has provided data on two more beagle dogs.

An exponential mixture (Eq. (11)1 was fitted to each of these data sets for n of
3-5. Initial parameter estimates were obtained graphically by ••peeling," then
8MD PAR nonlinear regression program (Dixon. 1981) with 1/7? weighting. In
view of the small numbers of observations for the nine beagles reported by Lloyd
et al. (1975), the standard error estimates for at least some of the components
are quite large. Furthermore, each of the beagles T15Q4-T21QI had at least one
observation sufficiently deviant to be given reduced or zero weight. However,
we set aside only those observations whose removal did not much change the
estimated parameters but greatly reduced the estimated standard errors of the
parameter estimates. The two beagles S and U for whom Or. Harsh provided
data had substantial variability in estimated /?(/). but also had such a large number
of data values for t > "I days that no single observation had much influence.

The parameter estimates for the 11 beagle dogs are shown in Table 3. There is
considerable consistency among beagle dogs in that R(t) shows three regimes at
the longest timescales: (a) 7 to 17% of the lead is retained in a term with time
constant >2200 days; (b) 5 to 35% of the lead is retained in a term with time
constant 55 to 500 days; (c) 20 to 67% of lead is retained in a term with time
constant 10 to 55 days. All of the data sets could be well described by three or
four exponential terms, even when the number of data points was very large (dogs
S and U). When plotted on a log-log scale, the exponential mixtures gave a
surprisingly good straight-line approximation over a large range of / values and
demonstrate that while the ICRP model or some similar power-function model
may be very convenient, it is not required in order to obtain a close fit to the
data.

An exponential model with three or four terms provided an adequate or very
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TABLE 3
ESTIMATED PARAMETERS FOR THREE LONGEST EXPONENTIAL COMPONENTS IN WHOLE-Boor

RETENTION FUNCTION FOR L£AU"

Litter Dog /V*

1

1

2

2

2

. 3

2

2

3

T1L5 II

T3L5 10

TI5Q4 9*

T16Q2 9f

T17Q2 9f

TI8Q2 -9«

T19QI 91

T20QI 9*

T2IQI 9*

S 83

U 72

r
1497

1100

,628

3136

3136

3136

3144

3144

3147

842

679

.*,
15.08
(0.55)
17.67
(1.29)
15.14
(3.00)
12.35
(1.05)
15.35
(0.90)
9.66

(0.64)

10.32
(0.20)
10.68
(0.49)
9.34

(1.08)
6.69

(2.54)
8.66

(2.61)

r,

0.0002884
(0.0000359)
0.0004687

(0.0000878)
0.0001078'

(0.00012:4)
0.0001860

(0.0000408)
0.0001849

(0.0000285)
0.0
0.0
0.0
00
0.0
0.0

0.0
0.0
0.000190'

(0.000466)
0000192'

(0.000466)

A,

37.54
(3.78)

31.88
,(5.98)
11.82
(4.15)
16.83
(2.29)
16.97
(3.03)
24.76
(3.10)
16.09
(0.65)
16.16
(3.46)
21.97
(4.00)
15.65
(1.65)
17.45
(I.7U

V,

0.01912
(0.00216)
0.01527

(0.00378)

• 0.003421
(0.002348)
0.004458

(0.001208)
0.004808

(0.001333)
0.003000

(0.000532)
0.001561
(0.000106;
0.002776

(0.000593)
0.001709

(0.00454)
0.005437

(0.001477) '

0.006993
(0.001778)

*i
36.69
(3.55)
42.25
16.08)
39.63
(3.37)
70.82
(2.78)
6768
(3.54)
65.59
(3.26)
73.59
(0.71)
73.16
(3.56)
68.69
(3.86)
32.12
(1.50)
50.09
(1.78)

"i
0.11255

(0.01686)
0.09044

(0.01807)

0.02333
(0.00712)

0.062 12
(0.02171)

0.03970
(0.00579)
0.05154

(0.02066)
0.03530

(0.00144)

0.03422
(0.00559!
0.04644

(0.01886)

0.04755
(0.00513)
0.06755

(0.00495)

• Values in parentheses are sundard errors. Data on dogs TIL5-T21QI are from Uoyd ei al. (1970.
1975); data on dogs S and U are from Hursh (1973).

* N: Number of data points in fit.
' T: Largest time in data set.
' Without observation at r • 187 days.
' Standard error of estimate exceed* parameter.
' Without observation at / - 357 days.
' Without observation at / - 585 days.

good fit for the whole-body retention function of lead to sets of 9 to 83 observations
on II beagle dogs, for observation times from 7 to 3147 days after injection of
the initial lead dose. The computer-optimized parameter estimates showed a con-
siderable range of variation across these 11 dogs, but also showed a considerable
degree of consistency in the estimated time scales. Thus, whole-body retention
functions can be compared on a componeiu-by-component basis, among-various-
individuals in a population. However, the differences in timescale parameters v
and coefficients A,.suggest that fitting retention functions to aggregated or aver
aged retention data may be relatively meaningless since the average of the pa-
rameters measured for each individual will differ from the parameters estimated
from the averaged data.

A
Do
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5JJ6)

044
307)

.'33

171)

970
579)

154
066)

530
144)

4:2
559)
M4
886)

'55
13)

'55
495)

1970.

These statistics can be used to estimate the diffusion parameters from the fitted
exponential time scales r;. using the eigenvalue approximations in Eqs. (6) and
(7). Let r, < v: < t-3 be the three smallest washout rates that can be fitted to the
data ( w i t h \i\-j > 60 days). Since for small c

:) 8c/(4 + t)
;) 25 ir/16 approximately

then c itself can be approximated from the ratios of smallest washout rates
vj/v, - (25 ir'/US) (4 + c)/c.

c - 4/{(I28 v;/25 ir'v,) -1}
or

Vj/V, (81 ir/l28)(4 + c)/c.

c - 4/{(I28vj/8I i^v,) -1}.

This estimated value of c. can be used to solve for D/b2 from v,. The method
is illustrated in Table 4 for all of the 11 beagle dogs. Note that v{ » 0 implies c
- 0. The estimates derived previously from the detailed companmental models
for dogs TILS and T3L5 are well approximated from the very crude method used
here, but only by assuming that the term involving the true v, has "vanished."
i.e., corresponds to A2 * 0. Therefore the second term in the exponential regres-
sion model fitted to the data is actually A, exp(- v3f), so that the ratio vJvt from
Table 3 is in reality vj/V,. With this modification, the estimated values of c are

TABLE 4
ESTIMATES OF DIFFUSION PAKAMETZU FROM LONG-TUX WHOLE-BODY LEA/RETENTION

Assuming 2nd Assuming no 2nd component

Do« (ytars) (yean)

ions
nof
on-
ible
;ion
ouv-
s v,
^er-
pa-
ited

TIL3
T3L5
TI5Q4
T16Q2
TI7Q2
TISQ2
TI9QI
T20QI
T71QI
S
U

66.30
32.51
31.73
24.62
26.00
+n
•*•«
+/0
+/0
21.62
36.42

0.120
0.252
0.259
0.340
0.320

(0.)
(0.)
(O.J
(0.)
0.219
0.224

2.21
2.77

12.34
9.47
1.94

. 14.07
27.05
1541
24.70
7.76
6.04

0.416
0.949
0.980
1.359
1.264

(0.)
(0.)
(0.)
(0.)
1. 117
0.121

7.15
S.96

39.99
30.69
21.45
45.60
S7.63
49.21
N.04
25.16
19.56

Note. Oau are from Uoyd n at. (1970,, 1975). Tabk 3. and personal communications from R. D.
Uoyd and J. Hursh.
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rather similar (about 0 to 1.36). small enough to justify the approximations used
above. The diffusion timescales b:/D are long and differ substantially from one
animal to another. 7 to 88 years: however, they are much closer among beagle
dogs from the same litter.

6. RESULTS
As shown in Table 2. the kinetic parameters relating blood, liver, kidney, and

other tissues, and bone can be estimated with reasonable precision with this
model. In particular, the diffusion scale D/b2 and outflow gradient parameter c
can be reasonably estimated and appear to be rather different in value for the two
dogs. Of course, such estimates are highly sensitive to the few data values at
large times /. It is of considerable interest that the input parameters are positive
only for the longest timescale corresponding to 0(1) (about 3000 days) and the
third longest timescale 6(3) (about 60 days). The input coefficients for 6(2). 6(4).
and 6(5) are best estimated as 0. This suggests that, to a crude first approximation,
we may assume initial deposition of lead in the canalicular territory close to radius
a so that it is either eliminated quickly by return to the canaliculus, or eliminated
very slowly after diffusion through the canalicular territory to the initial cana-
liculus. The other parameters for soft tissue disthbution of lead are much the
same in this model as in the usual compartmemal model.

There is also reason to believe that parameters for whole-body retention rea
sonably estimate those that would be derived from data on blood, fecal and
urinary excretion, and peripheral tissue concentrations if such are available. As
an example, the kinetic parameters from the compartmental model for beagle
T1L5 in Table I may be used to derive the model R(t) » 15.13 exp(-0.0002567/)
+ 24.17 exp<-0.012170 + 54.98 exp(-0.074650 + 2.25 exp(-0.2725;) + 2.05
exp(-1.2050 + 1.46 exp(-2.706/). Note that the first three terms differ sub-
stantially from those in Table 3. but that the timescales are at least comparable.
The longest terra is the one best estimated in this example. Thus the information
lost in using only R(t) rather than the whole compartmemal model may be sub-
stantial, but substantial information remains. On the other hand, the estimates of
the gradient parameter, c, in Table 4 are highly consistent.

7. DISCUSSION
Physiologically plausible models can be fitted to data on the long-term retention

of lead in mammals by use of standard methods of compartmental analysis.
Using more realistic models for bone kinetics, it may thus be possible to answer
questions about the mobilization of lead stored in bone pools long after acute or
chronic exposure to lead has ceased. Some of the possible events that could
increase lead flow are an increase in the diffusion parameter D (e.g., by osteo-
porosis), and an increase in the bone surface gradient parameter c by nutritional
changes. The presence of large bone pools of lead in adults may provide yet
another unexpected hazard caused by undue exposure to the metal, even if the
exposures are low-level chronic doses that do not cause excessive blood leau
levels at the time.

Long-term experiments on humans are not feasible. However, Steenhout (1982)
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has demonstrated an epidemiologic approach to lead kinetics using teeth and
bones. Our calculations suggest that a single exponential term (single bone com-
ponent corresponding to the smallest eigenvalue) may indeed be an adequate
description for bone kinetics in man on a lifetime scale, but additional components
may be necessary on a I -year scale.

Single exponentials for long-term retention in humans have also been proposed
by O'Flaherty er al. (1982) and by Kang et ai. (1983). using blood lead data on
workers removed from occupational lead exposures by strikes or by medical
removal protection programs. O'Flaherty et al. find a slight increase in the ap-
parent residence time of lead in blood with increasing duration of exposure, a
finding not replicated by Kang ft al. Our analysis suggests that such an increase
in residence time is possible because larger quantities of lead eventually diffuse
to interior pans of the osteon. However, the time-scales described by O'Flaherty
tt al. are rather short (ca. 80 to 90 days) compared to those found by Kang tt
al. (ca. 160 to 250 days). By analogy with the beagle dog data, these time-scales
probably do not correspond to the longest retention terms (i.e.,./ » 1. 2) but to
the faster components (/ - 3. 4. 5. etc.). Longer durations of exposure may thus
increase the coefficients of the components, j » 1.2. increasing the apparent
half-life of the exponential mixture.

The approach outlined in this paper allows practical fitting of retention func-
tions to models in which diffusion mechanisms play an important role. A class
of problems in which this may be of use involves clearance of flow-limited sub-
stances by diffusion through an assumed spherical liver acinus (Norwich. 1982);
Norwich and Siu, 1982). Our method allows the inclusion of other compartments
as well, and does not require the prohibitively costly numerical solution of a
diffusion equation at each iteration of the least-squares program that is used, to
estimate the unknown kinetic parameters. Our method may thus be useful for
fitting other toxicokinetic models.
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